Abstract
Glycosylation is an essential modification to proteins that has positive effects, such as improving the half-life of antibodies, and negative effects, such as promoting cancers. Despite the importance of glycosylation, data-driven models to predict quantitative N-glycan distributions have been lacking. This article constructs linear and neural network models to predict the distribution of glycans on N-glycosylation sites. The models are trained on data containing normalized B4GALT1–B4GALT4 levels in Chinese Hamster Ovary cells. The ANN models achieve a median prediction error of 1.59% on an independent test set, an error 9-fold smaller than for previously published models using the same data, and a narrow error distribution. We also discuss issues with other models in the literature and the advantages of this work’s model over other data-driven models. We openly provide all of the software used, allowing other researchers to reproduce the work and reuse or improve the code in future endeavors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.