Abstract
Knowledge of molecular structures of emerging charge acceptors, such as hexaaza-triphenylene-hexacarbonitrile (HATCN), on metal surfaces is essential for their optoelectronic device applications. Here, we studied the two-dimensional molecular ordering of HATCN at submonolayer coverages on Au(111) using scanning tunneling microscopy (STM). Linear and hexagonal porous structures were observed at atomic steps and terraces, respectively, and our density functional theory calculations revealed that the structures were stabilized with CN···CN dipolar interactions. The hexagonal porous structures possess chirality, and they form only small (<1000 nm2) phase-separated chiral domains that easily change their structures in subsequent STM images at 80 K, which explains the no electron diffraction pattern reported previously.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.