Abstract

This paper investigates whether and how discrete Fourier transforms (DFT) can be used to compute the local stress/strain distribution around holes in externally loaded two-dimensional representative volume elements (RVEs). To this end, the properties of DFT are first reviewed and then applied to the solution of linear elastic and time-dependent elastic plastic material response. The equivalent inclusion method is used to derive a functional equation which allows for the numerical computation of stresses and strains within an RVE with heterogeneities of arbitrary shape and stiffness. This functional equation is then specialized to the case of circular and elliptical holes of different minor axes which eventually degenerate into Griffith cracks. The numerically predicted stresses and strains are compared to the corresponding analytical solutions for a single circular as well as an elliptical hole in an infinitely large plate under tension as well as to finite element calculations (for time-independent elastic/plastic material response).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.