Abstract
We can talk about two kinds of stability of the Ricci flow at Ricci-flat metrics. One of them is a linear stability, defined with respect to Perelman's functional F (see [1, page 5]). The other one is a dynamical stability, and it refers to a convergence of a Ricci flow starting at any metric in a neighborhood of a considered Ricci-flat metric. We show that dynamical stability implies linear stability. We also show that a linear stability together with the integrability assumption implies dynamical stability. As a corollary, we get a stability result for K3-surfaces, part of which has been done in [11, Corollary 4.15, Theorem 4.16]. Our stability result applies to Calabi-Yau manifolds as well
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.