Abstract
The per-tone equalizer (PTEQ) has been presented as an attractive alternative for the classical time-domain equalizer (TEQ) in discrete multitone (DMT) based systems, such as ADSL systems. The PTEQ is based on a linear minimum mean-square-error (L-MMSE) equalizer design for each separate tone. In this paper, we reconsider DMT modulation and equalization in the ADSL context under the realistic assumption of an infinite impulse response (IIR) model for the wireline channel. First, optimum linear zero-forcing (L-ZF) block equalizers for arbitrary IIR model orders and cyclic prefix (CP) lengths are developed. It is shown that these L-ZF block equalizers can be decoupled per tone, hence they lead to an L-ZF PTEQ. Then, based on the L-ZF PTEQ, low-complexity L-MMSE PTEQ extensions are developed: the linear PTEQ extension exploits frequency-domain transmit redundancy from pilot and unused tones; alternatively, a closely related decision-feedback PTEQ extension can be applied. The PTEQ extensions then add flexibility to a DMT-based system design: the CP overhead can be reduced by exploiting frequency-domain transmit redundancy instead, so that a similar bitrate as with the original PTEQ is achieved at a lower memory and computational cost or, alternatively, a higher bitrate is achieved without a considerable cost increase. Both PTEQ extensions are also shown to improve the receiver's robustness to narrow-band interference.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.