Abstract
Recent experimental and numerical results demonstrates that the interfacial motion of a liner Z-pinch during the early stage of implosion may be controlled by the coupled effects of magneto-Rayleigh–Taylor (MRT), sausage, and kink instabilities. However, previous treatments of sausage instability have not considered the mechanical properties of the liner material. In this paper, we present an analytical model that allows us to study the effects of liner viscosity and elasticity on the coupling effects of MRT and sausage instabilities, and we further assume that the wavelengths are much smaller than the liner thickness by neglecting the feedthrough effect. The dispersion relations are analyzed. It is found that viscosity suppresses short-wavelength perturbations, and longer wavelengths are needed to achieve the fastest growing mode as the viscosity grows. Elasticity also strongly suppresses short-wavelength perturbations and eventually leads to the appearance of a cutoff wavenumber beyond which the interface always remains stable. In particular, the present approach provides the basis for the development of a more general theory that would also include magnetohydrodynamic instabilities and would allow a more accurate description of liner motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.