Abstract

The flow field induced by internal solitary waves (ISWs) is peculiar wherein water motion occurs in the whole water depth, and the strong shear near the pycnocline can be generated due to the opposite flow direction between the upper and lower layers, which is a potential threat to marine risers. In this paper, the flow field of ISWs is obtained with the Korteweg-de Vries (KdV) equation for a two-layer fluid system. Then, a linear analysis is performed for the dynamic response of a riser with its two ends simply supported under the action of ISWs. The explicit expressions of the deflection and the moment of the riser are deduced based on the modal superposition method. The applicable conditions of the theoretical expressions are discussed. Through comparisons with the finite element simulations for nonlinear dynamic responses, it is proved that the theoretical expressions can roughly reveal the nonlinear dynamic response of risers under ISWs when the approximation for the linear analysis is relaxed to some extent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call