Abstract
A systematic study of the linear stage of sheared flow stabilization of Z-pinch plasmas based on the Hall fluid model with equilibrium that contains sheared flow and an axial magnetic field is presented. In the study we begin with the derivation of a general set of equations that permits the evaluation of the combined effect of sheared flow and axial magnetic field on the development of the azimuthal mode number m=0 sausage and m=1 kink magnetohydrodynamic (MHD) instabilities, with the Hall term included in the model. The incorporation of sheared flow, axial magnetic field, and the Hall term allows the Z-pinch system to be taken away from the region in parameter space where ideal MHD is applicable to a regime where nonideal effects tend to govern stability. The problem is then treated numerically by following the linear development in time of an initial perturbation. The numerical results for linear growth rates as a function of axial sheared flow, an axial magnetic field, and the Hall term are reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.