Abstract

This paper addresses the problem of linear adaptive control for a class of uncertain continuous-time single-input single-output (SISO) nonaffine nonlinear dynamic systems. Using the implicit function theory, the existence of an ideal controller which can achieve control objectives is firstly demonstrated. However, this ideal controller cannot be known and computed even if the system model is well known. The aim of our work is to construct this unknown ideal controller using a simple linear controller with the free parameters updated online by a stable adaptation mechanism designed to minimise the error between the unknown ideal controller and the used linear controller. Since the mathematical model of the system is assumed unknown in this work, the proposed control scheme can be regarded as a simple model free controller for the studied class of nonaffine systems. We prove that the closed-loop system is stable and all the signals are bounded. An application of the proposed linear adaptive controller for a nonaffine system is illustrated through the simulation results to demonstrate the effectiveness of the proposed control scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.