Abstract

Autoantibody production and autoantibody-mediated inflammation are hallmarks of a number of autoimmune diseases. The K/BxN serum-transfer arthritis is one of the most widely used models of the effector phase of autoantibody-induced pathology. Several hematopoietic lineages including neutrophils, platelets, and mast cells have been proposed to contribute to inflammation and tissue damage in this model. We have previously shown that the Syk tyrosine kinase is critically involved in the development in K/BxN serum-transfer arthritis and bone marrow chimeric experiments indicated that Syk is likely involved in one or more hematopoietic lineages during the disease course. The aim of the present study was to further define the lineage(s) in which Syk expression is required for autoantibody-induced arthritis. To this end, K/BxN serum-transfer arthritis was tested in conditional mutant mice in which Syk was deleted in a lineage-specific manner from neutrophils, platelets, or mast cells. Combination of the MRP8-Cre, PF4-Cre, or Mcpt5-Cre transgene with floxed Syk alleles allowed efficient and selective deletion of Syk from neutrophils, platelets, or mast cells, respectively. This has also been confirmed by defective Syk-dependent in vitro functional responses of the respective cell types. In vivo studies revealed nearly complete defect of the development of K/BxN serum-transfer arthritis upon neutrophil-specific deletion of Syk. By contrast, Syk deletion from platelets or mast cells did not affect the development of K/BxN serum-transfer arthritis. Our results indicate that autoantibody-induced arthritis requires Syk expression in neutrophils, whereas, contrary to prior assumptions, Syk expression in platelets or mast cells is dispensable for disease development in this model.

Highlights

  • A number of autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, small vessel vasculitis, or pemphigoid diseases, are characterized by production of autoantibodies against various autoantigens of the mammalian body [1]

  • Our results indicate an important role for Syk expression in neutrophils whereas, contrary to our expectations, Syk expression in platelets or mast cells appears to be dispensable for arthritis development in this model

  • The Syk tyrosine kinase is critically involved in various inflammatory disease processes including the development of autoantibodyinduced arthritis and dermatitis models [11, 17, 25]

Read more

Summary

Introduction

A number of autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, small vessel vasculitis, or pemphigoid diseases, are characterized by production of autoantibodies against various autoantigens of the mammalian body [1]. The K/BxN serum-transfer arthritis is one of the most widely used mouse model of autoantibody-induced tissue damage This model is initiated by systemic injection of serum from so-called K/BxN mice in which the expression of a specific T-cell-receptor transgene on an autoimmunity-prone genetic background leads to the generation of high titers of autoantibodies against the ubiquitously expressed glucose 6-phosphate isomerase enzyme [2,3,4,5]. Transferring those autoantibodies with the K/BxN serum to naive animals triggers robust inflammation of the distal joints and of other tissues. Platelets were proposed to be required for the development of K/BxN serum-transfer arthritis by releasing plateletderived microparticles upon collagen-induced activation in the synovial tissue [10]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call