Abstract

BackgroundThe 200 kDa merozoite surface protein 1 (MSP-1) of malaria parasites, a strong vaccine candidate, plays a key role during erythrocyte invasion and is a target of host protective immune response. Plasmodium vivax, the most widespread human malaria parasite, is closely related to parasites that infect Asian Old World monkeys, and has been considered to have become a parasite of man by host switch from a macaque malaria parasite. Several Asian monkey parasites have a range of natural hosts. The same parasite species shows different disease manifestations among host species. This suggests that host immune responses to P. vivax-related malaria parasites greatly differ among host species (albeit other factors). It is thus tempting to invoke that a major immune target parasite protein such as MSP-1 underwent unique evolution, depending on parasite species that exhibit difference in host range and host specificity.ResultsWe performed comparative phylogenetic and population genetic analyses of the gene encoding MSP-1 (msp1) from P. vivax and nine P. vivax-related simian malaria parasites. The inferred phylogenetic tree of msp1 significantly differed from that of the mitochondrial genome, with a striking displacement of P. vivax from a position close to P. cynomolgi in the mitochondrial genome tree to an outlier of Asian monkey parasites. Importantly, positive selection was inferred for two ancestral branches, one leading to P. inui and P. hylobati and the other leading to P. vivax, P. fieldi and P. cynomolgi. This ancestral positive selection was estimated to have occurred three to six million years ago, coinciding with the period of radiation of Asian macaques. Comparisons of msp1 polymorphisms between P. vivax, P. inui and P. cynomolgi revealed that while some positively selected amino acid sites or regions are shared by these parasites, amino acid changes greatly differ, suggesting that diversifying selection is acting species-specifically on msp1.ConclusionsThe present results indicate that the msp1 locus of P. vivax and related parasite species has lineage-specific unique evolutionary history with positive selection. P. vivax and related simian malaria parasites offer an interesting system toward understanding host species-dependent adaptive evolution of immune-target surface antigen genes such as msp1.

Highlights

  • The 200 kDa merozoite surface protein 1 (MSP-1) of malaria parasites, a strong vaccine candidate, plays a key role during erythrocyte invasion and is a target of host protective immune response

  • We have shown that P. vivax msp1 shows extensive allelic variation but that the polymorphism pattern is clearly different from the dimorphic nature of P. falciparum msp1 [15]

  • Applying the mitochondrial genome sequence data to the topology of the msp1 codon 3 tree, the difference was not significant between the two topologies (Δli = -9.4, p = 0.333). These results indicate that the msp1 best tree is significantly different from the mitochondrial genome best tree, and that the difference between the mitochondrial genome best tree and the msp1 best tree is largely due to nonsynonymous substitutions in the latter, suggesting positive selection in the evolution of msp1

Read more

Summary

Introduction

The 200 kDa merozoite surface protein 1 (MSP-1) of malaria parasites, a strong vaccine candidate, plays a key role during erythrocyte invasion and is a target of host protective immune response. The same parasite species shows different disease manifestations among host species This suggests that host immune responses to P. vivax-related malaria parasites greatly differ among host species (albeit other factors). It is tempting to invoke that a major immune target parasite protein such as MSP-1 underwent unique evolution, depending on parasite species that exhibit difference in host range and host specificity. The 200 kDa merozoite surface protein 1 (MSP-1), a vaccine candidate antigen that is abundantly expressed on the surface of merozoites and plays critical role in erythrocyte invasion, is one of the major targets of the host immune response [2]. Disruption of the Plasmoium MSP-1 gene has been demonstrated to have a deleterious effect on the parasite growth in experimental animals [3]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call