Abstract
BackgroundMutations in the Otopetrin 1 gene (Otop1) in mice and fish produce an unusual bilateral vestibular pathology that involves the absence of otoconia without hearing impairment. The encoded protein, Otop1, is the only functionally characterized member of the Otopetrin Domain Protein (ODP) family; the extended sequence and structural preservation of ODP proteins in metazoans suggest a conserved functional role. Here, we use the tools of sequence- and cytogenetic-based comparative genomics to study the Otop1 and the Otop2-Otop3 genes and to establish their genomic context in 25 vertebrates. We extend our evolutionary study to include the gene mutated in Usher syndrome (USH) subtype 1G (Ush1g), both because of the head-to-tail clustering of Ush1g with Otop2 and because Otop1 and Ush1g mutations result in inner ear phenotypes.ResultsWe established that OTOP1 is the boundary gene of an inversion polymorphism on human chromosome 4p16 that originated in the common human-chimpanzee lineage more than 6 million years ago. Other lineage-specific evolutionary events included a three-fold expansion of the Otop genes in Xenopus tropicalis and of Ush1g in teleostei fish. The tight physical linkage between Otop2 and Ush1g is conserved in all vertebrates. To further understand the functional organization of the Ushg1-Otop2 locus, we deduced a putative map of binding sites for CCCTC-binding factor (CTCF), a mammalian insulator transcription factor, from genome-wide chromatin immunoprecipitation-sequencing (ChIP-seq) data in mouse and human embryonic stem (ES) cells combined with detection of CTCF-binding motifs.ConclusionsThe results presented here clarify the evolutionary history of the vertebrate Otop and Ush1g families, and establish a framework for studying the possible interaction(s) of Ush1g and Otop in developmental pathways.
Highlights
Mutations in the Otopetrin 1 gene (Otop1) in mice and fish produce an unusual bilateral vestibular pathology that involves the absence of otoconia without hearing impairment
Through cytogenetic and comparative genomic methods, we established that OTOP1 is the boundary gene of an inversion polymorphism on human chromosome 4p16 that originated in the common human-chimpanzee lineage more than 6 million years ago
For the remaining species, the orthologous sequences were retrieved from whole-genome sequence assemblies available on the UCSC Genome Browser
Summary
Mutations in the Otopetrin 1 gene (Otop1) in mice and fish produce an unusual bilateral vestibular pathology that involves the absence of otoconia without hearing impairment. The etiology of BBPV often relates to the degeneration or displacement of otoconia [2,3], the minute biomineral particles in the utricle and saccule within the inner ear involved in detecting linear acceleration and gravity [4]. There are no known human hereditary vestibular disorders attributed to mutations in genes selectively affecting otoconial development or maintenance. Otopetrin 1 (Otop1) is one of a handful of known genes that, when mutated, cause an imbalance phenotype with selective otoconial involvement in animal models [4,5]. Specific Otop mutations have been reported in mouse (tilted [tlt, [9]], mergulhador [mlh, [10]], and inner ear defect [ied, [11]])
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.