Abstract

Lineage analysis is the identification of all the progeny of a single progenitor cell, and has become particularly useful for studying developmental processes and cancer biology. Here, we propose a novel and effective method for lineage analysis that combines sequence capture and next-generation sequencing technology. Genome-wide mononucleotide and dinucleotide microsatellite loci in eight samples from two mice were identified and used to construct phylogenetic trees based on somatic indel mutations at these loci, which were unique enough to distinguish and parse samples from different mice into different groups along the lineage tree. For example, biopsies from the liver and stomach, which originate from the endoderm, were located in the same clade, while samples in kidney, which originate from the mesoderm, were located in another clade. Yet, tissue with a common developmental origin may still contain cells of a mixed ancestry. This genome-wide approach thus provides a non-invasive lineage analysis method based on mutations that accumulate in the genomes of opaque multicellular organism somatic cells. Mol. Reprod. Dev. 83: 387-391, 2016. © 2016 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.