Abstract
Let \(X\) be an infinite-dimensional Banach space. In 1995, settling a long outstanding problem of Pettis, Dilworth and Girardi constructed an \(X\)-valued Pettis integrable function on \([0,1]\) whose primitive is nowhere weakly differentiable. Using their technique and some new ideas we show that \(\mathbf{ND}\), the set of strongly measurable Pettis integrable functions with nowhere weakly differentiable primitives, is lineable, i.e., there is an infinite dimensional vector space whose nonzero vectors belong to \(\mathbf{ND}\).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.