Abstract
ABSTRACTStress relaxation behavior of thermally induced stresses in passivated line structures is strongly influenced by the metal yield strength. For some line geometries, stress relaxation can lead to void formation. In this study, bending beam measurements have been carried out to measure the thermal stress and stress relaxation behavior of passivated Al(l wt.% Cu) line structures with 3, 1, and 0.5 µm line widths. Our results reveal that stress relaxation in Al(Cu) films and lines shows log(time) kinetics consistent with a thermally activated dislocation glide mechanism. The kinetics of stress relaxation depend on line geometry and temperature, which can be explained by a combined effect of temperature (mass transport) and shear stress (driving force).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.