Abstract

We study the morphologies of single liquid droplets wetting a substrate in the presence of the line tension of the three-phase contact line. On a homogeneous substrate, the line tension leads to a discontinuous unbinding of the droplet if its volume is decreased below a critical value. For a droplet wetting a structured surface with a circular domain, a line tension contrast gives rise to discontinuous depinning transitions of the contact line from the domain boundary as the droplet volume is varied. We calculate the corresponding free energy bifurcation diagram analytically for axisymmetric droplet shapes. Numerical minimization of the droplet free energy shows that line tension contrasts can stabilize nonaxisymmetric droplet shapes, thus modifying the bifurcation diagram. These latter shapes should be accessible to experiments and can be used to reveal the presence of a line tension contrast.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call