Abstract

Prestack seismic data denoising is an important step in seismic processing due to the development of prestack time migration. Reduced-rank filtering is a state-of-the-art method for prestack seismic denoising that uses predictability between neighbor traces for each single frequency. Different from the original way of embedding low-rank matrix based on the Hankel or Toeplitz transform, we have developed a new multishot gathers joint denoising method in a line survey, which used a new way of rearranging data to a matrix with low rank. Inspired by video denoising, each single-shot record in the line survey can be viewed as a frame in the video sequence. Due to high redundancy and similar event structure among the shot gathers, similar patches can be selected from different shot gathers in the line survey to rearrange a low-rank matrix. Then, seismic denoising is formulated into a low-rank minimization problem that can be further relaxed into a nuclear-norm minimization problem. A fast algorithm, called the orthogonal rank-one matrix pursuit, is used to solve the nuclear-norm minimization. Using this method avoids the computation of a full singular value decomposition. Our method is validated using synthetic and field data, in comparison with [Formula: see text] deconvolution and singular spectrum analysis methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call