Abstract

An increasing number of heavy machinery and vehicles have come into service, giving rise to a significant concern over protecting these high-security systems from misuse. Conventionally, authentication performed merely at the initial login may not be sufficient for detecting intruders throughout the operating session. To address this critical security flaw, a line-scan continuous hand authentication system with the appearance of an operating rod is proposed. Given that the operating rod is occupied throughout the operating period, it can be a possible solution for unobtrusively recording the personal characteristics for continuous monitoring. The ergonomics in the physiological and psychological aspects are fully considered. Under the shape constraints, a highly integrated line-scan sensor, a controller unit, and a gear motor with encoder are utilized. This system is suitable for both the desktop and embedded platforms with a universal serial bus interface. The volume of the proposed system is smaller than 15% of current multispectral area-based camera systems. Based on experiments on a database with 4000 images from 200 volunteers, a competitive equal error rate of 0.1179% is achieved, which is far more accurate than the state-of-the-art continuous authentication systems using other modalities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.