Abstract
A novel approach, termed line-rotated remapping (LRR), for high resolution electron backscatter diffraction is proposed to remap patterns with large rotation. In LRR, the displacements during the first-pass cross-correlation is modified to a function of the corresponding Kikuchi lines and the points on the reference pattern. Then, the finite rotation matrix to remap the test pattern to a similar orientation of the reference pattern is determined using the parameters of the Kikuchi lines. We apply LRR to simulated Si patterns with random orientations, and obtain measurement errors below ∼1.0 × 10−3 for lattice rotations up to ∼26°. The maximum angle that may be remapped by LRR decreases with the distance between the specimen and the screen, which in turn reduces the number of matched Kikuchi lines. We also employ LRR in experiments to quantitatively characterize rotations and elastic strains of a Ni single crystal subject to nanoindentation and tension measurements. Although more experimental data on pattern center and image contrast are required to properly assess the performance of LRR, our method is a promising technique to improve strain measurements in the presence of large rotations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.