Abstract
Given ω ≥ 1, let $\Z^2_{(\omega)}$ be the graph with vertex set $\Z^2$ in which two vertices are joined if they agree in one coordinate and differ by at most ω in the other. (Thus $\Z^2_{(1)}$ is precisely $\Z^2$.) Let pc(ω) be the critical probability for site percolation on $\Z^2_{(\omega)}$. Extending recent results of Frieze, Kleinberg, Ravi and Debany, we show that limω→∞ωpc(ω)=log(3/2). We also prove analogues of this result for the n-by-n grid and in higher dimensions, the latter involving interesting connections to Gilbert's continuum percolation model. To prove our results, we explore the component of the origin in a certain non-standard way, and show that this exploration is well approximated by a certain branching random walk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.