Abstract

We present a detailed weak-lensing and X-ray study of the Frontier Fields galaxy cluster Abell 370, one of the most massive known lenses on the sky, using wide-field BR C z′ Subaru/Suprime-Cam and Chandra X-ray observations. By combining two-dimensional (2D) shear and azimuthally averaged magnification constraints derived from Subaru data, we perform a lensing mass reconstruction in a free-form manner, which allows us to determine both the radial structure and 2D morphology of the cluster mass distribution. In a triaxial framework assuming a Navarro–Frenk–White density profile, we constrain the intrinsic structure and geometry of the cluster halo by forward modeling the reconstructed mass map. We obtain a halo mass M 200 = (1.54 ± 0.29) ×1015 h −1 M ⊙, a halo concentration c 200 = 5.27 ± 1.28, and a minor–major axis ratio q a = 0.62 ± 0.23 with uninformative priors. Using a prior on the line-of-sight alignment of the halo major axis derived from binary merger simulations constrained by multi-probe observations, we find that the data favor a more prolate geometry with lower mass and lower concentration. From triaxial lens modeling with the line-of-sight prior, we find a spherically enclosed gas mass fraction of f gas = (8.4 ± 1.0)% at 0.7 h −1 Mpc ∼ 0.7r 500. When compared to the hydrostatic mass estimate (M HE) from Chandra observations, our triaxial weak-lensing analysis yields spherically enclosed mass ratios of 1 − b ≡ M HE/M WL = 0.56 ± 0.09 and 0.51 ± 0.09 at 0.7 h −1 Mpc with and without using the line-of-sight prior, respectively. Since the cluster is in a highly disturbed dynamical state, this represents the likely maximum level of hydrostatic bias in galaxy clusters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call