Abstract

AbstractWe used the red clump stars from the Optical Gravitational Lensing Experiment (OGLE II) survey and the Magellanic Cloud Photometric Survey (MCPS), to estimate the line-of-sight depth. The observed dispersion in the magnitude and colour distribution of red clump stars is used to estimate the line-of-sight depth, after correcting for the contribution due to other effects. This dispersion due to depth, has a range from minimum dispersion that can be estimated, to 0.46 mag (a depth of 500 pc to 10.44 kpc), in the LMC. In the case of the SMC, the dispersion ranges from minimum dispersion to 0.35 magnitude (a depth of 665 pc to 9.53 kpc). The thickness profile of the LMC bar indicates that it is flared. The average depth in the bar region is 4.0 ± 1.4 kpc. The halo of the LMC (using RR Lyrae stars) is found to have larger depth compared to the disk/bar, which supports the presence of an inner halo for the LMC. The large depth estimated for the LMC bar and the disk suggests that the LMC might have had minor mergers. In the case of the SMC, the bar depth (4.90 ± 1.23 kpc) and the disk depth (4.23 ± 1.48 kpc) are found to be within the standard deviations. We find evidence for an increase in depth near the optical center (up to 9 kpc). On the other hand, the estimated depth for the halo (RR Lyrae stars) and disk (RC stars) for the bar region of the SMC is found to be similar. Thus, increased depth and enhanced stellar as well as H i density near the optical center suggests that the SMC may have a bulge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call