Abstract

Organic solids have extensive proton-proton dipolar interactions, and their 1H NMR linewidths are very large even with magic-angle spinning at moderate speeds. Recently it has been shown that substantial narrowing of the proton linewidths of organic solids can be achieved by using single-pulse excitation with acquisition delay or spin echo [S. Ding and C. A. McDowell, J. Magn. Reson. A 111, 212 (1994); 115, 141 (1995); 117, 171 (1995)]. This interesting line-narrowing phenomenon has been further examined through the study of several amino acids, their deuterated analogs, and some aromatic compounds. The results confirm that narrow proton peaks are observed with long acquisition delay, and the peaks appear in the appropriate chemical-shift ranges for organic protons (0-10 ppm with respect to tetramethylsilane). However, except for some special cases, the observed peaks cannot be assigned to individual types of protons based on chemical-shift considerations only. To explore the reason for the line narrowing, the effect of acquisition delay on the 19F linewidth of CaF2 was also studied and compared with that on the 1H linewidths of organic solids. It is suggested that the broad proton peak in an organic solid is a superposition of numerous transitions. These transitions have different linewidths, and the narrow peaks in the spectrum remain observable with long acquisition delays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call