Abstract

This work continues a series of publications devoted to the application of the effective operator approach to the vibrational–rotational treatment of linear triatomic molecules, aiming at the analysis and prediction of their infrared spectra. In that frame work, we have started a large-scale work aiming at the global description of line intensities of cold and hot bands of 14N216O in its ground electronic state in the spectral range above 3600 cm−1. In 14N216O, vibrational interacting levels group in polyads as a result of the relation 2ω1≈4ω2≈ω3 existing between the harmonic frequencies. The polyads are identified by the so-called polyad number P=2V1+V2+4V3. The work described in the present paper concerns bands associated with transitions corresponding to ΔP=7, 8, and 9. The absorption spectra of N2O at room temperature have been recorded at a resolution of 0.007 cm−1 in the range from 4300 to 5200 cm−1 using a Bruker IFS120HR Fourier transform spectrometer. Sample pressure/absorption path length products ranging from 7 to 1753 mbar × m have been used. More than 3000 absolute line intensities have been measured in 66 different bands belonging to the ΔP=7, 8, and 9 series. Dicke narrowing has been observed in the high-pressure spectra. Using wavefunctions previously determined from a global fit of an effective Hamiltonian to about 18,000 line positions (S. A. Tashkun, V. I. Perevalov, and J.-L. Teffo to be published), the experimental intensities measured in this work and by R. A. Toth (J. Mol. Spectrosc.197, 158–187 (1999)) were fitted to 47 parameters of a corresponding effective dipole moment, with residuals very close to the experimental uncertainty. Exa mples are given showing that the modeling reproduces intensities of perturbed lines well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.