Abstract
Weak grids are gaining considerable attention since power generation resources are remote from constant power loads (CPLs), which results in low-frequency/harmonic oscillation. Meanwhile, due to the play, and plug demand of modern power system, the line inductance of weak grids often changes, which is also regarded as the variation regarding short circuit ratio (SCR). Based on this, the conventional impedance-based stability operation point assessment approaches should be expanded into stability domain assessment approach considering the line inductance variation. Therefore, the stability-oriented line inductance stability domain assessment approach for weak grids with CPLs is proposed in this paper. Firstly, the source impedance matrix of weak grid, and load admittance matrix of CPLs are separately built. Secondly, an improved stability forbidden domain criterion is proposed through related mapping transformation process, which has lower conservatism than two previous improved stability criteria. Thirdly, the improved stability forbidden domain criterion is switched into the condition that the intermediate matrices are Hurwitz. Meanwhile, the line inductance stability domain is directly obtained through these intermediate matrices, and guardian map theory. Finally, the simulation, and experiment results illustrate that the proposed approach has less conservatism, and high efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.