Abstract

Abstract Multiple patterning employing etch shrink extends the scaling of hardmask open CD (HCD) to sub-50nm regime. A plasma-assisted shrink technique is primarily used in the back-end-of-line (BEOL) however it faces major challenges such as the line end shortening (LES) and large critical dimension iso-dense bias (IDB). In order to mitigate these two problems we apply an atomic layer deposition (ALD) spacer shrink process at 10nm metal interconnect layer with sub-20nm minimum half-pitch. As a result we observed 8nm LES improvement in tip-to-tip (T2T) two-dimensional (2D) structures, and 5nm IDB reduction in one-dimensional (1D) structures. These improvements suggest that the ALD spacer shrink can contribute to more precise CD control in multiple patterning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call