Abstract

Radiative transfer modelling of high resolution infrared (or microwave) spectra still represents a major challenge for the processing of atmospheric remote sensing data despite significant advances in the numerical techniques utilized in line-by-line modelling by, e.g., optimized Voigt function algorithms or multigrid approaches. Special purpose computing hardware such as Field Programmable Gate Arrays (FPGAs) can be used to cope with the dramatic increase of data quality and quantity. Utilizing a highly optimized implementation of an uniform rational function approximation of the Voigt function, the molecular absorption cross section computation-representing the most compute intensive part of radiative transfer codes-has been realized on FPGA. Design and implementation of the FPGA coprocessor is presented along with first performance tests and an outlook for the ongoing further development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call