Abstract

The spectral profiles of Ca and Rb lines have been studied in a laser induced plasma as a function of pressure (1–10 torr) and delay time with respect to the plasma initiation (1–10 μs). Measurements were made in a plasma induced by the 1064-nm output of a Nd:YAG laser on a calcium carbonate matrix, doped with Rb. Spectral profiles were measured in absorption using a narrow-band cw Ti:Sapphire laser. It was shown that in the case of a trace element (Rb in a CaCO3 matrix), the broadening mechanism was Doppler-dominant, whereas for a major matrix component (Ca), resonance broadening was the main contributor to the line shape. The plasma was shown to be non-equilibrium provided by the difference between the kinetic (3000 K) and the excitation (8000 K) temperatures. The electron number density at delay times of 5–10 μs and pressures of 1–10 torr was estimated not to exceed 1015 cm−3. The number densities of Ca atoms in the ground and the excited (23652 cm−1) states were evaluated by measuring line width and peak absorption at 732.6 nm. They were found to be in the range of (1.5–2.2)×1017 cm−3 for the ground state and (1.5–33)×1011 cm−3 for the excited state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.