Abstract
LINE-1 (L1) retrotransposons are mobile genetic elements that create new genomic insertions by a copy-paste mechanism involving L1 RNA/RNP intermediates. L1 encodes two ORFs, of which L1-ORF2p nicks genomic DNA and reverse transcribes L1 mRNA using the nicked DNA as a primer which base-pairs with poly(A) tail of L1 mRNA. To better understand the importance of non-templated L1 3' ends' dynamics and the interplay between L1 3' and 5' ends, we investigated the effects of genomic knock-outs and temporal knock-downs of XRN1, DCP2, and other factors. We hypothesized that in the absence of XRN1, the major 5'→3' exoribonuclease, there would be more L1 mRNA and retrotransposition. Conversely, we observed that loss of XRN1 decreased L1 retrotransposition. This occurred despite slight stabilization of L1 mRNA, but with decreased L1 RNP formation. Similarly, loss of DCP2, the catalytic subunit of the decapping complex, lowered retrotransposition despite increased steady-state levels of L1 proteins. In both XRN1 and DCP2 depletions we observed shortening of L1 3' poly(A) tails and their increased uridylation by TUT4/7. We explain the observed reduction of L1 retrotransposition by the changed qualities of non-templated L1 mRNA 3' ends demonstrating the important role of L1 3' end dynamics in L1 biology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.