Abstract

Away from equilibrium, the properties of open quantum systems depend on the details of their environment. A microscopic derivation of a master equation (ME) is therefore crucial. Of particular interest are Lindblad-type equations, not only because they provide the most general class of Markovian MEs, but also since they are the starting point for efficient quantum trajectory simulations. Lindblad-type MEs are commonly derived from the Born-Markov-Redfield equation via a rotating-wave approximation (RWA). However the RWA is valid only for ultraweak system-bath coupling and often fails to accurately describe nonequilibrium processes. Here we derive an alternative Lindbladian approximation to the Redfield equation, which does not rely on ultraweak system-bath coupling. Applying it to an extended Hubbard model coupled to Ohmic baths, we show that, especially away from equilibrium, it provides a good approximation in large parameter regimes where the RWA fails.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call