Abstract

To investigate the effects of long intergenic noncoding RNA-erythroid prosurvival (lincRNA-EPS) on periodontal inflammation mediated by inflammasomes and to explore its mechanism. Experimental periodontitis was induced in KO (lincRNA-EPS-/- ) and WT (lincRNA-EPS+/+ ) mice to compare the periodontal bone loss and inflammation by using micro-computed tomography, immunofluorescence staining and haematoxylin and eosin staining. The expression and activation of cysteinyl aspartate-specific proteinase-11 (caspase-11) and NOD-like receptor protein 3 (NLRP3) inflammasomes, as well as nuclear factor-kappa B (NF-κB) activation in mouse gingival fibroblasts (MGFs), were measured by real-time quantitative polymerase chain reaction, Western blotting, enzyme-linked immunosorbent and lactate dehydrogenase assays. MGFs were transfected with overexpression plasmids to assess the biological functions of lincRNA-EPS. RNA pull-down and immunoprecipitation experiments were performed to identify the interacting protein of lincRNA-EPS. LincRNA-EPS-expressing lentivirus was locally administered to inflamed periodontal tissues to evaluate its salvage function in periodontitis. The absence of lincRNA-EPS increased bone loss and expression of myeloperoxidase, interleukin-1α (IL-1α) and IL-1β in the inflammatory periodontium. LincRNA-EPS KO MGFs exhibited increased expression and activation of caspase-11/NLRP3 inflammasome components than WT MGFs under lipopolysaccharide (LPS) stimulation. The expression and activation of these molecules were inhibited in lincRNA-EPS overexpressed MGFs. Mechanistically, lincRNA-EPS directly bound to transactive response DNA-binding protein 43 (TDP43) in the nucleus of MGFs, and TDP43 knockdown exerted a similar inhibitory effect on NF-κB activation and the inflammasomes as lincRNA-EPS overexpression. Locally injecting lincRNA-EPS-expressing lentivirus weakened the periodontal damage. LincRNA-EPS inhibits the LPS-induced production and activation of caspase-11 and NLRP3 inflammasomes by suppressing the activation of the NF-κB signalling pathway via interacting with TDP43, thereby alleviating periodontitis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call