Abstract
Emerging evidence indicates that dysfunction of long non-coding RNAs (lncRNAs) plays an essential role in the initiation and progression of hepatocellular carcinoma (HCC). In this study we investigated the potential roles and molecular mechanisms involving LINC01419 in HCC. The expression of LINC01419 in 40 pairs of HCC/normal tissues and 6 HCC cell lines was detected by qRT-PCR. MTS, EdU, colony formation, scratch wound-healing and transwell assays were performed to assess the role of LINC01419 in HCC cell (SMMC7721 and SK-Hep1) proliferation, migration and invasion in vitro. Artificial modulation of LINC01419 (up- and downregulation) was performed to explore the role of LINC01419 in tumor growth and metastasis in vivo. Interaction of LINC01419 with NDRG1 was assessed using qRT-PCR, RNA sequencing, Western blotting and immunohistochemistry. Physical interaction of LINC01419 with the NDRG1 promoter was assessed using a dual-luciferase reporter assay. We observed LINC01419 overexpression in primary HCC tissues and HCC cell lines and that this overexpression positively correlated with large tumor size, increased vascular invasion and advanced TNM stage in 40 HCC patients. Exogenous LINC01419 expression significantly promoted HCC cell proliferation, migration and invasion in vitro, as well as tumorigenesis and metastasis in vivo. Conversely, we found that LINC01419 expression knockdown elicited opposite effects. Mechanistic investigations revealed that LINC01419 exerted its biological effects by regulating NDRG1. A dual-luciferase reporter assay revealed that LINC01419 interacts with a specific region within the NDRG1 promoter, resulting in its activation. From our data we conclude that LINC01419 acts clinically, functionally and mechanistically oncogenic in HCC. LINC01419 may, therefore, serve as a promising prognostic indicator and therapeutic target for HCC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.