Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Recent studies have demonstrated that lncRNAs play an important role in tumorigenesis. LINC01291 has been confirmed to be involved in the proliferation and migration of different cancers, although the function of LINC01291 in HCC is still unknown. First, the expression of LINC01291 in 50 paired HCC tissues, adjacent normal tissues and HCC cell lines was measured by a quantitative real-time polymerase chain reaction. Then, the function of LINC01291 in HCC cell proliferation, migration and invasion was measured by colony formation, Cell Counting Kit-8 assays, wound healing assays and transwell assays. In addition, E-cadherin, N-cadherin, vimentin and oxidative stress-responsive 1 (OXSR1) protein expression levels were assessed via western blotting. Luciferase reporter assays were used to confirm the relationship between LINC01291 and miR-186-5p, as well as miR-186-5p and OXSR1 mRNA. Rescue assays and in vivo experiments further confirmed the LINC01291/miR-186-5p/OXSR1 axis in the progression of HCC. LINC01291 was upregulated in both HCC tissues and cell lines. Knockdown of LINC01291 inhibited the proliferation, migration, invasion and epithelial-mesenchymal progression (EMT) of HCC cells. In addition, LINC01291 could overexpress OXSR1 by sponging miR-186-5p, and OXSR1 overexpression or miR-186-5p inhibition could rescue the effect of LINC01291 knockdown in YY-8103 cell lines. In addition, lentiviral sh-LINC01291 could effectively inhibit the growth of subcutaneous YY-8103 xenograft tumors, whereas the anticancer effect could be reversed by cotransfection with in-miR-186-5p or ov-OXSR1. LINC01291 can promote the proliferation, migration, invasion and EMT of HCC cells via the miR-186-5p/OXSR1 axis, and sh-LINC01291 can inhibit tumor growth in a xenograft mouse model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.