Abstract

Long non-coding RNAs (lncRNAs) have been implicated in the development and progression of tumors. However, the roles and underlying mechanisms of long intergenic non-protein coding RNA 1116 (LINC01116), a member of the lncRNA family, in glioma progression are largely unclear. The expression of LINC01116 and microRNA (miR)-744-5p in glioma tissues and cells was detected by reverse transcription-quantitative PCR. The influences of LINC01116 or miR-744-5p on cell proliferation and invasion were evaluated by Cell Counting Kit-8, colony formation and Transwell assays, and western blotting was used to detect the expression of p53 pathway proteins. A dual-luciferase reporter system was used to locate common binding sites between miR-744-5p and LINC01116 or the 3′ untranslated region of E3 ubiquitin-protein ligase Mdm2 (MDM2). RNA immunoprecipitation was used to determine the interactions between RNAs and proteins. Moreover, a xenograft mouse model was constructed to investigate the effects of LINC01116 in vivo, followed by a TdT-mediated dUTP nick end labeling assay to determine the degree of apoptosis in nude mouse tumors. LINC01116 was found to be highly expressed in glioma tissues, which was associated with a malignant phenotype. LINC01116 promoted the proliferation and invasiveness of glioma cells, and inhibited the p53 pathway by preserving the expression of MDM2 mRNA via miR-744-5p sponging. Furthermore, a low degree of miR-744-5p expression was observed in glioma tissues, which was negatively associated with the expression of LINC01116. Overexpression of miR-744-5p inhibited the proliferation and invasiveness of glioma cells, which was rescued by LINC01116. Finally, LINC01116 knockdown inhibited tumor growth in nude mice. In conclusion, LINC01116 is aberrantly expressed and promotes the progression of glioma by regulating the miR-744-5p-MDM2-p53 pathway. In future, targeting LINC01116 may therefore be a potential therapeutic approach for patients with glioma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.