Abstract

This study aimed to investigate the role and potential mechanisms of LINC00987 in acute myeloid leukemia (AML) progression. The expression of LINC00987 in bone marrow specimens of AML patients and cell lines was measured by quantitative reverse transcription PCR (RT-qPCR). Small interfering RNA targeting LINC00987 (si-LINC00987) was transfected into AML cell lines HL-60 and KG-1, and the proliferation, invasion and apoptosis were detected with Cell Counting Kit-8 (CCK-8), Transwell and flow cytometry, respectively. Moreover, the binding between LINC00987 and insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2) was validated with an RNA pull-down assay. Co-immunoprecipitation assay was used to verify the binding between IGF2BP2 and proliferation-associated 2G4 (PA2G4). Then rescue experiments were performed to explore the effects of LINC00987/IGF2BP2/PA2G4 axis on HL-60 and KG-1 cell functions. Additionally, HL-60 cells transfected with si-LINC00987 were injected into mice, followed by the evaluation of xenograft tumor growth. LINC00987 was upregulated in AML patient specimens and cell lines. LINC00987 knockdown inhibited proliferation and invasion and promoted apoptosis in AML cells. LINC00987 could bind with IGF2BP2 and promote its expression, and IGF2BP2 overexpression reversed the effects of LINC00987 knockdown on the proliferation, invasion and apoptosis in AML cells. Besides, IGF2BP2 could bind with PA2G4. IGF2BP2 knockdown inhibited proliferation and invasion, and promoted apoptosis in AML cells, whereas PA2G4 overexpression reversed these effects. Additionally, the LINC00987 knockdown inhibited the xenograft tumor growth of AML in vivo. Knockdown of LINC00987 inhibits AML cell proliferation and invasion, and promotes apoptosis in vitro and reduces tumor growth in vivo by suppressing IGF2BP2-mediated PA2G4 expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.