Abstract

PurposeLong non-coding RNAs have been found to be involved in bladder cancer development. This article studied LINC00963 effects on bladder cancer progression to provide a novel treatment target.Patients and MethodsTotally 56 bladder cancer patients participated in this research. Bladder cancer cells were transfected. Cell counting kit 8 assay and clone formation experiment were used for cell viability and colony formation detection. Cell migration and invasion were determined by Transwell experiment. LINC00963 distribution was explored by cytoplasmic and nuclear extract isolation and quantitative real-time polymerase chain reaction. Luciferase reporter experiment and RNA pulldown experiment were performed to detect the relationship between these two genes. The cancer genome atlas analysis was used for the detection of metastasis-associated protein 1 (MTA1) expression in bladder cancer.ResultsLINC00963 was seriously up-regulated in bladder cancer patients. High LINC00963 expression indicated high histological grade and low survival. LINC00963 was obviously up-regulated in bladder cancer cells. Knockdown of LINC00963 significantly reduced bladder cancer cells viability, colony formation, migration and invasion. Luciferase reporter experiment and RNA pulldown experiment revealed that LINC00963 promoted MTA1 expression via directly inhibiting miR-766-3p. MTA1 was up-regulated in bladder cancer patients. MTA1 up-regulation reversed the inhibitory effect of LINC00963 knockdown on bladder cancer cell viability, migration and invasion.ConclusionLINC00963 functions as an oncogene in bladder cancer by regulating the miR-766-3p/MTA1 axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.