Abstract

Gastric cancer is the third leading cause of cancer-related deaths worldwide, and research on gastric cancer pathogenesis is fundamental. Long intergenic non-coding RNAs (lincRNAs) control cancer initiation and progression through several mechanisms, with the competitive endogenous RNA (ceRNA) regulatory network being the most common. In this study, in situ hybridization revealed that long intergenic non-protein coding RNA-regulator of reprogramming (linc-ROR) was highly expressed in gastric cancer cells and was mainly cytoplasmic-positive. Cell counting kit-8 (CCK-8), plate colony formation, wound healing, and Transwell assay revealed that linc-ROR knockdown impedes the growth, proliferation, and migration of gastric cancer cells, while linc-ROR overexpression promoted gastric cancer cell growth, migration, and colony formation ability. Combined with previous studies, the molecular mechanism axis of linc-ROR/miR-145-5-5p/POU5F1/SOX2 was verified. The expression of linc-ROR knockdown significantly suppressed the protein expression of POU5F1 and SOX2. Co-transfection with linc-ROR siRNA reverses the carcinogenic effect of the miR-145-5p inhibitor on gastric cancer cell proliferation, cloning, and migration. These findings lay a foundation for developing novel targets for gastric cancer treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call