Abstract

Generation of a giant pulse of Er:YAG laser is complicated mainly due to the properties of the Er:YAG active medium itself. It is caused by the short lifetime of the upper laser level of Er:YAG crystal and a small gain for one pass of the radiation through the active medium. In our case, a specially designed LiNbO<sub>3</sub> electrooptic shutter was used for Q-switching of Er:YAG laser. Brewster angles were employed at the LiNbO<sub>3</sub> crystal faces to avoid the inclusion of a polarizer into the resonator. Even if Er:YAG crystal emission is naturally unpolarized we have found that polarization sensitive reflections at two Brewster-cut ends of Pockels cell are sufficient to reach extinction ratio necessary for giant pulse generation. By help of theoretical analysis based on Jones calculus was found the dependency of Pockels cell radiation transmission on applied voltage. Calculated transmission of Brewster-Brewster LiNbO<sub>3</sub> Pockels cell operating in quarter-wave regime was 30% in closed state. Theoretically and experimentally was found, that for 25 mm long LiNbO<sub>3</sub> crystal voltage 1.5 kV is sufficient for Q-switching. With described Pockels cell was realized stable running Q-switched Er:YAG laser system. The generated giant pulse length and energy was 70 ns and 30 mJ, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.