Abstract
Borates, due to their structural chemistry diversity and exceptional performance, are premier material systems for investigating UV optical crystals. The B-O anionic groups with high polymerization (B ≥ 6) are much less in the borate-based system, which is worthy of further research. Herein, cations with different radii and proportions are introduced to borate system, and two new highly polymerized borates, LiNa2Ca8B12O24F6Cl (LNCBFC) and Li1.2Na2.8B6O11 (LNBO) were designed and synthesized successfully. LNCBFC possesses commonly isolated high-symmetry [B12O24] groups, while the structure of LNBO contains an unprecedented 1∞[B12O22] chain constructed by [B12O24] groups. Owing to the orientation of the functional motifs in the chain structure, LNBO displays an enhanced birefringence, which is about 25 × higher than that of LNCBFC and retains a short UV cutoff edge (< 200 nm). Even more significantly, a discussion of the cationic modulation of [B12O24]-based compounds and the patterns of isolated [BnO2n] motifs consisting of B-O rings was carried out by reviewing previous studies and existing borates. This work puts forward a decent structure design and property regulation strategy for highly polymerized borates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.