Abstract
Exogenous bone marrow-derived cells (BMDCs) are promising therapeutic agents for the treatment of tissue ischemia and traumatic injury. However, until we identify the molecular mechanisms that underlie their actions, there can be no rational basis for the design of therapeutic strategies using BMDCs. The pro-healing effects of BMDCs are apparent very shortly after treatment, which suggests that they may exert their effects by the modulation of acute inflammation. We investigated this hypothesis by taking advantage of the fact that BMDCs from healthy, young, but not obese, diabetic mice stimulate vascular growth. By comparing both in vitro secretion and in vivo local induction of acute phase inflammatory cytokines by these cells, we identified monocyte chemoattractant factor 1 and tumor necrosis factor α as potential mediators of BMDC-induced tissue repair. In vivo analysis of BMDC-treated ischemic limbs and cutaneous wounds revealed that the production of monocyte chemoattractant factor 1 by exogenous and endogenous BMDCs is essential for BMDC-mediated vascular growth and tissue healing, while the inability of BMDCs to produce tumor necrosis factor α appears to play a lesser but still meaningful role. Thus, measurements of the secretion of cytokines by BMDCs may allow us to identify a priori individuals who would or would not be good candidates for BMDC-based therapies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.