Abstract

Deep learning greatly empowers Inertial Measurement Unit (IMU) sensors for a wide range of sensing applications. Most existing works require substantial amounts of wellcurated labeled data to train IMU-based sensing models, which incurs high annotation and training costs. Compared with labeled data, unlabeled IMU data are abundant and easily accessible. This article presents a novel representation learning model that can make use of unlabeled IMU data and extract generalized rather than task-specific features. With the representations learned via our model, task-specific models trained with limited labeled samples can achieve superior performances in typical IMU sensing applications, such as Human Activity Recognition (HAR).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call