Abstract

Long term exposure to solar ultraviolet B (UVB) radiation is one of the primary factors of premature skin aging and is referred to as photoaging. Also, mammalian skin exposed to UVB triggers an increase in production of α-melanocyte-stimulating hormone (α-MSH), which is critically involved in the pathogenesis of hyperpigmentary skin diseases. This study investigated the protective effect of limonene on UVB-induced photodamage and photoaging in immortalized human skin keratinocytes (HaCaT) in vitro. Initially, we determined cell viability and levels of reactive oxygen species (ROS) in UVB-irradiated HaCaT cells. Pretreatment with limonene increased cell viability followed by inhibition of intracellular ROS generation in UVB-irradiated HaCaT cells. Interestingly, the antioxidative activity of limonene was directly correlated with an increase in expression of endogenous antioxidants, including heme oxygenase 1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO-1), and γ-glutamylcysteine synthetase (γ-GCLC), which was associated with enhanced nuclear translocation and activation of NF-E2-related factor-2 (Nrf2). Indeed, Nrf2 knockdown reduced limonene's protective effects. Additionally, we observed that limonene treatment inhibited UVB-induced α-MSH secretion followed by inhibition of proopiomelanocortin (POMC) via suppression of p53 transcriptional activation. Moreover, limonene prevented UVB-mediated depletion of tight junction regulatory proteins, including occludin and zonula occludens-1. On the other hand, limonene treatment significantly decreased matrix metalloproteinase-2 levels in UVB-irradiated HaCaT cells. Based on these results, limonene may have a dermato-protective effect in skin cells by activating the Nrf2-dependent cellular antioxidant defense system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call