Abstract
Lactating animals consume greater amounts of food than non-reproductive animals, but energy intake appears to be limited in late lactation. The heat dissipation limit theory suggests that the food intake of lactating mice is limited by the capacity of the mother to dissipate heat. Lactating mice should therefore have high body temperatures (Tb), and changes in energy intake during lactation should be reflected by variation in Tb. To investigate these predictions, 26 mice (Mus musculus) were monitored daily throughout lactation for food intake, body mass, litter size and litter mass. After weaning, 21 days postpartum, maternal food intake and body mass were monitored for another 10 days. Maternal activity and Tb were recorded every minute for 23 h a day using implanted transmitters (vital view). Energy intake increased to a plateau in late lactation (days 13-17). Daily gain in pup mass declined during this same period, suggesting a limit on maternal energy intake. Litter size and litter mass were positively related to maternal energy intake and body mass. Activity levels were constantly low, and mice with the largest increase in energy intake at peak lactation had the lowest activity. Tb rose sharply after parturition and the circadian rhythm became compressed within a small range. Tb during the light period increased considerably (1.1 ° C higher than in baseline), and lactating mice faced chronic hyperthermia, despite their activity levels in lactation being approximately halved. Average Tb increased in relation to energy intake as lactation progressed, but there was no relationship between litter size or litter mass and the mean Tb at peak lactation. These data are consistent with the heat dissipation limit theory, which suggests performance in late lactation is constrained by the ability to dissipate body heat.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.