Abstract

For wavelength division multiplexing (WDM) systems over nonzero dispersion fiber, we evaluate the statistics of the eye-closure due to four-wave mixing (FWM) in the presence of arbitrary data values and optical phases in all WDM channels. By Monte Carlo (MC) experiments, we determine the distribution function and the standard deviation of the eye-closure for several channel counts. Convolution of the distribution after a single span yields the eye-closure distribution after multiple amplified spans. The results are used to assess the Q-factor penalty in a WDM system. The limits for optical power, chromatic dispersion and channel spacing can then be found. It is shown that the power of the FWM products can be used to estimate the system penalty due to FWM. When comparing standard single-mode fiber with nonzero dispersion-shifted fiber (NZDSF), we find that standard fiber allows for a triple narrower channel spacing than NZDSF, given the same set of system parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.