Abstract

BackgroundA previous study reported a comprehensive quantitative trait locus (QTL) and genome wide association study (GWAS) of southern leaf blight (SLB) resistance in the maize Nested Association Mapping (NAM) panel. Since that time, the genomic resources available for such analyses have improved substantially. An updated NAM genetic linkage map has a nearly six-fold greater marker density than the previous map and the combined SNPs and read-depth variants (RDVs) from maize HapMaps 1 and 2 provided 28.5 M genomic variants for association analysis, 17 fold more than HapMap 1. In addition, phenotypic values of the NAM RILs were re-estimated to account for environment-specific flowering time covariates and a small proportion of lines were dropped due to genotypic data quality problems. Comparisons of original and updated QTL and GWAS results confound the effects of linkage map density, GWAS marker density, population sample size, and phenotype estimates. Therefore, we evaluated the effects of changing each of these parameters individually and in combination to determine their relative impact on marker-trait associations in original and updated analyses.ResultsOf the four parameters varied, map density caused the largest changes in QTL and GWAS results. The updated QTL model had better cross-validation prediction accuracy than the previous model. Whereas joint linkage QTL positions were relatively stable to input changes, the residual values derived from those QTL models (used as inputs to GWAS) were more sensitive, resulting in substantial differences between GWAS results. The updated NAM GWAS identified several candidate genes consistent with previous QTL fine-mapping results.ConclusionsThe highly polygenic nature of resistance to SLB complicates the identification of causal genes. Joint linkage QTL are relatively stable to perturbations of data inputs, but their resolution is generally on the order of tens or more Mbp. GWAS associations have higher resolution, but lower power due to stringent thresholds designed to minimize false positive associations, resulting in variability of detection across studies. The updated higher density linkage map improves QTL estimation and, along with a much denser SNP HapMap, greatly increases the likelihood of detecting SNPs in linkage with causal variants. We recommend use of the updated genetic resources and results but emphasize the limited repeatability of small-effect associations.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-1068) contains supplementary material, which is available to authorized users.

Highlights

  • A previous study reported a comprehensive quantitative trait locus (QTL) and genome wide association study (GWAS) of southern leaf blight (SLB) resistance in the maize Nested Association Mapping (NAM) panel

  • With the recent release of maize HapMap2 [14] and a denser linkage map based on genotyping-by-sequencing (GBS [15,16]) with markers positioned every 0.2 cM, QTL identified by joint linkage mapping (JLM) can be more precisely localized on the genetic and physical sequence maps

  • Among the 135 of 156 possible combinations of rating × environment × NAM populations for which there were sufficient data for analysis, there was no significant relationship between flowering time and SLB resistance for 56 combinations, linear relationships for 75 combinations, and quadratic relationships for 4 combinations (Additional file 1: Table S1)

Read more

Summary

Introduction

A previous study reported a comprehensive quantitative trait locus (QTL) and genome wide association study (GWAS) of southern leaf blight (SLB) resistance in the maize Nested Association Mapping (NAM) panel. The maize nested association mapping (NAM) population is composed of 5,000 recombinant inbred lines (RILs) derived from crosses between inbred line B73 and 25 other inbred lines of maize [2] These parents were selected to capture a maximum amount of molecular genetic diversity present across the major subpopulations of public maize breeding germplasm [3,4]. Using joint linkage mapping (JLM) and genome-wide association study (GWAS) the genetic architecture of resistance to SLB in the NAM population was associated with more than 30 loci with small additive effects [8]. The denser linkage map is expected to permit more accurate projection of the more than 28 M SNPs among parental lines in maize HapMaps 1 and 2 onto NAM RILs, which should provide mapping precision to the limits dictated by linkage and disequilibrium in this population

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call