Abstract

The observation of GW170817 in both gravitational and electromagnetic waves provides a number of unique tests of general relativity. One question we can answer with this event is: do large-wavelength gravitational waves and short-frequency photons experience the same number of spacetime dimensions? In models that include additional non-compact spacetime dimensions, as the gravitational waves propagate, they “leak” into the extra dimensions, leading to a reduction in the amplitude of the observed gravitational waves, and a commensurate systematic error in the inferred distance to the gravitational wave source. Electromagnetic waves would remain unaffected. We compare the inferred distance to GW170817 from the observation of gravitational waves, dLGW, with the inferred distance to the electromagnetic counterpart NGC 4993, dLEM. We constrain dLGW = (dLEM/Mpc)γ with γ = 1.01+0.04−0.05 (for the SHoES value of H0) or γ = 0.99+0.03−0.05 (for the Planck value of H0), where all values are MAP and minimal 68% credible intervals. These constraints imply that gravitational waves propagate in D=3+1 spacetime dimensions, as expected in general relativity. In particular, we find that D = 4.02+0.07−0.10 (SHoES) and D = 3.98+0.07−0.09 (Planck). Furthermore, we place limits on the screening scale for theories with D>4 spacetime dimensions, finding that the screening scale must be greater than ∼ 20 Mpc. We also place a lower limit on the lifetime of the graviton of t > 4.50 × 108 yr.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.