Abstract

Abstract In this Letter, we show that if planetesimals form in spiral features in self-gravitating discs, as previously suggested by the idealized simulations of Rice et al., then in realistic protostellar discs, this process will be restricted to the outer regions of the disc (i.e. at radii in excess of several tens of au). This restriction relates to the requirement that dust has to be concentrated in spiral features on a time-scale that is less than the (roughly dynamical) lifetime of such features, and that such rapid accumulation requires spiral features whose fractional amplitude is not much less than unity. This in turn requires that the cooling time-scale of the gas is relatively short, which restricts the process to the outer disc. We point out that the efficient conversion of a large fraction of the primordial dust in the disc into planetesimals could rescue this material from the well-known problem of rapid inward migration at an approximate metre-size scale and that in principle the collisional evolution of these objects could help to resupply small dust to the protostellar disc. We also point out the possible implications of this scenario for the location of planetesimal belts inferred in debris discs around main sequence stars, but stress that further dynamical studies are required in order to establish whether the disc retains a memory of the initial site of planetesimal creation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.