Abstract

Naor and Yung (1989) show that a one-bit-compressing universal one-way hash function (UOWHF) can be constructed based on a one-way permutation. This construction can be iterated to build a UOWHF which compresses by /spl epsiv/n bits, at the cost of /spl epsiv/n invocations of the one-way permutation. The show that this construction is not far from optimal, in the following sense, there exists an oracle relative to which there exists a one-way permutation with inversion probability 2/sup -p(n)/ (for any p(n)/spl isin//spl omega/(log n)), but any construction of an /spl epsiv/n-bit-compressing UOWHF. Requires /spl Omega/(/spl radic/n/p(n)) invocations of the one-way permutation, on average. (For example, there exists in this relativized world a one-way permutation with inversion probability n/sup -/spl omega/(1)/, but no UOWHF that involves it fewer than /spl Omega/(/spl radic/n/log n) times.) Thus any proof that a more efficient UOWHF can be derived from a one-way permutation is necessarily non-relativizing; in particular, no provable construction of a more efficient UOWHF can exist based solely on a black box one-way permutation. This result can be viewed as a partial justification for the practice of building efficient UOWHFs from stronger primitives (such as collision intractable hash functions), rather than from weaker primitives such as one-way permutations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.