Abstract

A colored weak singlet scalar state with hypercharge 4/3 is one of the possible candidates for the explanation of the unexpectedly large forward-backward asymmetry in t tbar production as measured by the CDF and D0 experiments. We investigate the role of this state in a plethora of flavor changing neutral current processes and precision observables of down-quarks and charged leptons. Our analysis includes tree- and loop-level mediated observables in the K and B systems, the charged lepton sector, as well as the Z to b bbar decay width. We perform a global fit of the relevant scalar couplings. This approach can explain the (g-2)_mu anomaly while tensions among the CP violating observables in the quark sector, most notably the nonstandard CP phase (and width difference) in the Bs system cannot be fully relaxed. The results are interpreted in a class of grand unified models which allow for a light colored scalar with a mass below 1TeV. We find that the renormalizable SU(5) scenario is not compatible with our global fit, while in the SO(10) case the viability requires the presence of both the 126- and 120-dimensional representations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.