Abstract

Recently, the NANOGrav, PPTA, EPTA, and CPTA Collaborations independently reported their evidence of the Stochastic Gravitational Waves Background (SGWB). While the inferred gravitational-wave background amplitude and spectrum are consistent with astrophysical expectations for a signal from the population of supermassive black-hole binaries (SMBHBs), the search for new physics remains plausible in this observational window. In this work, we explore the possibility of explaining such a signal by the scalar-induced gravitational waves (IGWs) in the very early universe. We use a parameterized broken power-law function as a general description of the energy spectrum of the SGWB and fit it to the new results of NANOGrav, PPTA and EPTA. We find that this approach can put constraints on the parameters of IGW energy spectrum and further yield restrictions on various inflation models that may produce primordial black holes (PBHs) in the early universe, which is also expected to be examined by the forthcoming space-based GW experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call